Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Immunol ; 13: 906551, 2022.
Article in English | MEDLINE | ID: covidwho-2198831

ABSTRACT

Background: Zinc (Zn) is an essential trace element with high relevance for the immune system, and its deficiency is associated with elevated infection risk and severe disease course. The association of Zn status with the immune response to SARS-CoV-2 vaccination is unknown. Methods: A cohort of adult health care workers (n=126) received two doses of BNT162B2, and provided up to four serum samples over a time course of 6 months. Total SARS-CoV-2 IgG and neutralizing antibody potency was determined, along with total as well as free Zn concentrations. Results: The SARS-CoV-2 antibodies showed the expected rise in response to vaccination, and decreased toward the last sampling point, with highest levels measured three weeks after the second dose. Total serum Zn concentrations were relatively stable over time, and showed no significant association with SARS-CoV-2 antibodies. Baseline total serum Zn concentration and supplemental intake of Zn were both unrelated to the antibody response to SARS-CoV-2 vaccination. Time resolved analysis of free Zn indicated a similar dynamic as the humoral response. A positive correlation was observed between free Zn concentrations and both the induced antibodies and neutralizing antibody potency. Conclusion: While the biomarkers of Zn status and supplemental Zn intake appeared unrelated to the humoral immune response to SARS-CoV-2 vaccination, the observed correlation of free Zn to the induced antibodies indicates a diagnostic value of this novel biomarker for the immune system.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Vaccination , Zinc
2.
Front Immunol ; 13: 1022673, 2022.
Article in English | MEDLINE | ID: covidwho-2163017

ABSTRACT

Introduction: Certain trace elements are essential for life and affect immune system function, and their intake varies by region and population. Alterations in serum Se, Zn and Cu have been associated with COVID-19 mortality risk. We tested the hypothesis that a disease-specific decline occurs and correlates with mortality risk in different countries in Europe. Methods: Serum samples from 551 COVID-19 patients (including 87 non-survivors) who had participated in observational studies in Europe (Belgium, France, Germany, Ireland, Italy, and Poland) were analyzed for trace elements by total reflection X-ray fluorescence. A subset (n=2069) of the European EPIC study served as reference. Analyses were performed blinded to clinical data in one analytical laboratory. Results: Median levels of Se and Zn were lower than in EPIC, except for Zn in Italy. Non-survivors consistently had lower Se and Zn concentrations than survivors and displayed an elevated Cu/Zn ratio. Restricted cubic spline regression models revealed an inverse nonlinear association between Se or Zn and death, and a positive association between Cu/Zn ratio and death. With respect to patient age and sex, Se showed the highest predictive value for death (AUC=0.816), compared with Zn (0.782) or Cu (0.769). Discussion: The data support the potential relevance of a decrease in serum Se and Zn for survival in COVID-19 across Europe. The observational study design cannot account for residual confounding and reverse causation, but supports the need for intervention trials in COVID-19 patients with severe Se and Zn deficiency to test the potential benefit of correcting their deficits for survival and convalescence.


Subject(s)
COVID-19 , Selenium , Trace Elements , Humans , Zinc , Copper , Trace Elements/analysis
3.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1939922

ABSTRACT

Background Zinc (Zn) is an essential trace element with high relevance for the immune system, and its deficiency is associated with elevated infection risk and severe disease course. The association of Zn status with the immune response to SARS-CoV-2 vaccination is unknown. Methods A cohort of adult health care workers (n=126) received two doses of BNT162B2, and provided up to four serum samples over a time course of 6 months. Total SARS-CoV-2 IgG and neutralizing antibody potency was determined, along with total as well as free Zn concentrations. Results The SARS-CoV-2 antibodies showed the expected rise in response to vaccination, and decreased toward the last sampling point, with highest levels measured three weeks after the second dose. Total serum Zn concentrations were relatively stable over time, and showed no significant association with SARS-CoV-2 antibodies. Baseline total serum Zn concentration and supplemental intake of Zn were both unrelated to the antibody response to SARS-CoV-2 vaccination. Time resolved analysis of free Zn indicated a similar dynamic as the humoral response. A positive correlation was observed between free Zn concentrations and both the induced antibodies and neutralizing antibody potency. Conclusion While the biomarkers of Zn status and supplemental Zn intake appeared unrelated to the humoral immune response to SARS-CoV-2 vaccination, the observed correlation of free Zn to the induced antibodies indicates a diagnostic value of this novel biomarker for the immune system.

4.
Redox Biol ; 50: 102242, 2022 04.
Article in English | MEDLINE | ID: covidwho-1851993

ABSTRACT

The essential trace element selenium (Se) is of central importance for human health and particularly for a regular functioning of the immune system. In the context of the current pandemic, Se deficiency in patients with COVID-19 correlated with disease severity and mortality risk. Selenium has been reported to be associated with the immune response following vaccination, but it is unknown whether this also applies to SARS-CoV-2 vaccines. In this observational study, adult health care workers (n = 126) who received two consecutive anti-SARS-CoV-2 vaccinations by BNT162b2 were followed for up to 24 weeks, with blood samples collected at the first and second dose and at three and 21 weeks after the second dose. Serum SARS-CoV-2 IgG titres, neutralising antibody potency, total Se and selenoprotein P concentrations, and glutathione peroxidase 3 activity were quantified. All three biomarkers of Se status were significantly correlated at all the time points, and participants who reported supplemental Se intake displayed higher Se concentrations. SARS-CoV-2 IgG titres and neutralising potency were highest three weeks after the second dose and decreased towards the last sampling point. The humoral immune response was not related to any of the three Se status biomarkers. Supplemental Se intake had no effect at any time point on the vaccination response as measured by serum SARS-CoV-2 IgG levels or neutralising potency. Overall, no association was found between Se status or supplemental Se intake and humoral immune response to COVID-19 mRNA vaccination.


Subject(s)
COVID-19 , Selenium , Adult , BNT162 Vaccine , COVID-19 Vaccines , Humans , Immunity, Humoral , RNA, Messenger , SARS-CoV-2 , Vaccination
5.
Nutrients ; 14(7)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1834853

ABSTRACT

Free zinc is considered to be the exchangeable and biological active form of zinc in serum, and is discussed to be a suitable biomarker for alterations in body zinc homeostasis and related diseases. Given that coronavirus disease 2019 (COVID-19) is characterized by a marked decrease in total serum zinc, and clinical data indicate that zinc status impacts the susceptibility and severity of the infection, we hypothesized that free zinc in serum might be altered in response to SARS-CoV-2 infection and may reflect disease severity. To test this hypothesis, free zinc concentrations in serum samples of survivors and nonsurvivors of COVID-19 were analyzed by fluorometric microassay. Similar to the reported total serum zinc deficit measured by total reflection X-ray fluorescence, free serum zinc in COVID-19 patients was considerably lower than that in control subjects, and surviving patients displayed significantly higher levels of free zinc than those of nonsurvivors (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0004). In contrast to recovering total zinc concentrations (r = 0.706, p < 0.001) or the declining copper-zinc ratio (r = -0.646; p < 0.001), free zinc concentrations remained unaltered with time in COVID-19 nonsurvivors. Free serum zinc concentrations were particularly low in male as compared to female patients (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0003). This is of particular interest, as the male sex is described as a risk factor for severe COVID-19. Overall, results indicate that depressed free serum zinc levels are associated with increased risk of death in COVID-19, suggesting that free zinc may serve as a novel prognostic marker for the severity and course of COVID-19.


Subject(s)
COVID-19 , Biomarkers , Female , Humans , Male , SARS-CoV-2 , Severity of Illness Index , Zinc
6.
Nutrients ; 14(7):1407, 2022.
Article in English | MDPI | ID: covidwho-1762455

ABSTRACT

Free zinc is considered to be the exchangeable and biological active form of zinc in serum, and is discussed to be a suitable biomarker for alterations in body zinc homeostasis and related diseases. Given that coronavirus disease 2019 (COVID-19) is characterized by a marked decrease in total serum zinc, and clinical data indicate that zinc status impacts the susceptibility and severity of the infection, we hypothesized that free zinc in serum might be altered in response to SARS-CoV-2 infection and may reflect disease severity. To test this hypothesis, free zinc concentrations in serum samples of survivors and nonsurvivors of COVID-19 were analyzed by fluorometric microassay. Similar to the reported total serum zinc deficit measured by total reflection X-ray fluorescence, free serum zinc in COVID-19 patients was considerably lower than that in control subjects, and surviving patients displayed significantly higher levels of free zinc than those of nonsurvivors (mean ±SD;0.4 ±0.2 nM vs. 0.2 ±0.1 nM;p = 0.0004). In contrast to recovering total zinc concentrations (r = 0.706, p < 0.001) or the declining copper–zinc ratio (r = −0.646;p < 0.001), free zinc concentrations remained unaltered with time in COVID-19 nonsurvivors. Free serum zinc concentrations were particularly low in male as compared to female patients (mean ±SD;0.4 ±0.2 nM vs. 0.2 ±0.1 nM;p = 0.0003). This is of particular interest, as the male sex is described as a risk factor for severe COVID-19. Overall, results indicate that depressed free serum zinc levels are associated with increased risk of death in COVID-19, suggesting that free zinc may serve as a novel prognostic marker for the severity and course of COVID-19.

7.
Biomedicines ; 9(11)2021 Nov 18.
Article in English | MEDLINE | ID: covidwho-1523867

ABSTRACT

The immune response to vaccination with SARS-CoV-2 vaccines varies greatly from person to person. In addition to age, there is evidence that certain micronutrients influence the immune system, particularly vitamin D. Here, we analysed SARS-CoV-2 IgG and neutralisation potency along with 25-hydroxy-cholecalciferol [25(OH)D] concentrations in a cohort of healthy German adults from the time of vaccination over 24 weeks. Contrary to our expectations, no significant differences were found in the dynamic increase or decrease of SARS-CoV-2 IgG as a function of the 25(OH)D status. Furthermore, the response to the first or second vaccination, the maximum SARS-CoV-2 IgG concentrations achieved, and the decline in SARS-CoV-2 IgG concentrations over time were not related to 25(OH)D status. We conclude that the vaccination response, measured as SARS-CoV-2 IgG concentration, does not depend on 25(OH)D status in healthy adults with moderate vitamin D status.

8.
Nutrients ; 13(6)2021 May 31.
Article in English | MEDLINE | ID: covidwho-1256620

ABSTRACT

The trace element copper (Cu) is part of our nutrition and essentially needed for several cuproenzymes that control redox status and support the immune system. In blood, the ferroxidase ceruloplasmin (CP) accounts for the majority of circulating Cu and serves as transport protein. Both Cu and CP behave as positive, whereas serum selenium (Se) and its transporter selenoprotein P (SELENOP) behave as negative acute phase reactants. In view that coronavirus disease (COVID-19) causes systemic inflammation, we hypothesized that biomarkers of Cu and Se status are regulated inversely, in relation to disease severity and mortality risk. Serum samples from COVID-19 patients were analysed for Cu by total reflection X-ray fluorescence and CP was quantified by a validated sandwich ELISA. The two Cu biomarkers correlated positively in serum from patients with COVID-19 (R = 0.42, p < 0.001). Surviving patients showed higher mean serum Cu and CP concentrations in comparison to non-survivors ([mean+/-SEM], Cu; 1475.9+/-22.7 vs. 1317.9+/-43.9 µg/L; p < 0.001, CP; 547.2.5 +/- 19.5 vs. 438.8+/-32.9 mg/L, p = 0.086). In contrast to expectations, total serum Cu and Se concentrations displayed a positive linear correlation in the patient samples analysed (R = 0.23, p = 0.003). Serum CP and SELENOP levels were not interrelated. Applying receiver operating characteristics (ROC) curve analysis, the combination of Cu and SELENOP with age outperformed other combinations of parameters for predicting risk of death, yielding an AUC of 95.0%. We conclude that the alterations in serum biomarkers of Cu and Se status in COVID-19 are not compatible with a simple acute phase response, and that serum Cu and SELENOP levels contribute to a good prediction of survival. Adjuvant supplementation in patients with diagnostically proven deficits in Cu or Se may positively influence disease course, as both increase in survivors and are of crucial importance for the immune response and antioxidative defence systems.


Subject(s)
COVID-19/blood , COVID-19/mortality , Copper/blood , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cross-Sectional Studies , Disease-Free Survival , Female , Humans , Longitudinal Studies , Male , Middle Aged , Selenium/blood , Selenoprotein P/blood , Survival Rate
9.
Redox Biol ; 38: 101764, 2021 01.
Article in English | MEDLINE | ID: covidwho-880596

ABSTRACT

SARS-CoV-2 infections cause the current coronavirus disease (COVID-19) pandemic and challenge the immune system with ongoing inflammation. Several redox-relevant micronutrients are known to contribute to an adequate immune response, including the essential trace elements zinc (Zn) and selenium (Se). In this study, we tested the hypothesis that COVID-19 patients are characterised by Zn deficiency and that Zn status provides prognostic information. Serum Zn was determined in serum samples (n = 171) collected consecutively from patients surviving COVID-19 (n = 29) or non-survivors (n = 6). Data from the European Prospective Investigation into Cancer and Nutrition (EPIC) study were used for comparison. Zn concentrations in patient samples were low as compared to healthy subjects (mean ± SD; 717.4 ± 246.2 vs 975.7 ± 294.0 µg/L, P < 0.0001). The majority of serum samples collected at different time points from the non-survivors (25/34, i.e., 73.5%) and almost half of the samples collected from the survivors (56/137, i.e., 40.9%) were below the threshold for Zn deficiency, i.e., below 638.7 µg/L (the 2.5th percentile in the EPIC cohort). In view that the Se status biomarker and Se transporter selenoprotein P (SELENOP) is also particularly low in COVID-19, we tested the prevalence of a combined deficit, i.e., serum Zn below 638.7 µg/L and serum SELENOP below 2.56 mg/L. This combined deficit was observed in 0.15% of samples in the EPIC cohort of healthy subjects, in 19.7% of the samples collected from the surviving COVID-19 patients and in 50.0% of samples from the non-survivors. Accordingly, the composite biomarker (SELENOP and Zn with age) proved as a reliable indicator of survival in COVID-19 by receiver operating characteristic (ROC) curve analysis, yielding an area under the curve (AUC) of 94.42%. We conclude that Zn and SELENOP status within the reference ranges indicate high survival odds in COVID-19, and assume that correcting a diagnostically proven deficit in Se and/or Zn by a personalised supplementation may support convalescence.


Subject(s)
COVID-19/blood , COVID-19/mortality , P-Selectin/blood , SARS-CoV-2/metabolism , Zinc/blood , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/diagnosis , Cross-Sectional Studies , Disease-Free Survival , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Survival Rate
10.
Nutrients ; 12(7):2098, 2020.
Article | WHO COVID | ID: covidwho-654292

ABSTRACT

SARS-CoV-2 infections underlie the current coronavirus disease (COVID-19) pandemic and are causative for a high death toll particularly among elderly subjects and those with comorbidities. Selenium (Se) is an essential trace element of high importance for human health and particularly for a well-balanced immune response. The mortality risk from a severe disease like sepsis or polytrauma is inversely related to Se status. We hypothesized that this relation also applies to COVID-19. Serum samples (n = 166) from COVID-19 patients (n = 33) were collected consecutively and analyzed for total Se by X-ray fluorescence and selenoprotein P (SELENOP) by a validated ELISA. Both biomarkers showed the expected strong correlation (r = 0.7758, p <0.001), pointing to an insufficient Se availability for optimal selenoprotein expression. In comparison with reference data from a European cross-sectional analysis (EPIC, n = 1915), the patients showed a pronounced deficit in total serum Se (mean ±SD, 50.8 ±15.7 vs. 84.4 ±23.4 µg/L) and SELENOP (3.0 ±1.4 vs. 4.3 ±1.0 mg/L) concentrations. A Se status below the 2.5th percentile of the reference population, i.e., [Se] <45.7 µg/L and [SELENOP] <2.56 mg/L, was present in 43.4% and 39.2% of COVID samples, respectively. The Se status was significantly higher in samples from surviving COVID patients as compared with non-survivors (Se;53.3 ±16.2 vs. 40.8 ±8.1 µg/L, SELENOP;3.3 ±1.3 vs. 2.1 ±0.9 mg/L), recovering with time in survivors while remaining low or even declining in non-survivors. We conclude that Se status analysis in COVID patients provides diagnostic information. However, causality remains unknown due to the observational nature of this study. Nevertheless, the findings strengthen the notion of a relevant role of Se for COVID convalescence and support the discussion on adjuvant Se supplementation in severely diseased and Se-deficient patients.

SELECTION OF CITATIONS
SEARCH DETAIL